beCP

2020
Task 3: Skyline (skyline)

Author: Prasanna Ramakrishnan Preparation: Victor Lecomte
Time limit: 1s Memory limit: 512 MB

Note: This task is interactive. Please look at the special instructions to
implement, compile and test your program. Don’t hesitate to ask the staff

for help.

Instead of winning a trip to Singapore, all you got was a cheesy postcard
of the city’s skyline. You’re understandably disappointed, but cherish this
symbolic picture nevertheless. In a moment of boredom, you decide to figure
out the height of the highest building in the postcard.

The image is n pixels wide and m pixels tall. Each pixel is either black
(building) or white (empty). There are no overhangs: no black pixel is
directly above a white pixel. You can query pixels one by one using their
coordinates. Determine the maximum number of black pixels in a single
column, using ¢ queries or less.

o H N W s~ o

|
| |
| |
|| ||
0 3

H |
|| ||
1 5

i

in the above postcard, n = 8 and m =6

Functions to implement

C+-+ | long long findHighest(long long n, long long m)

Given dimensions n and m of the image, calls isBlack(i,j)
repeatedly to find the highest building.

return | An integer, the number of black pixels in the column that has
the most black pixels.

1/4

beCP 2020 — Task 3: Skyline (skyline)

Functions to call

C++ ‘ bool isBlack(long long i, long long j)

Queries the color of the pixel (7, j): the pixel in column i
(0 <i<n)and row j (0 <j < m). Note the 0-indexing, and
note that rows are numbered from bottom to top!

return | true if pixel (7, 7) is black, and false if it is white.

Limits

e 1 <n <10° the width of the postcard;
e 1 <m <108, the height of the postcard.

Additional constraints

For each subtask, this table gives an upper bound on n, m, and a lower
bound on ¢ (the maximum number of times you can call isBlack()).

Subtask Points n< m< ¢>

A 5 20 10 106
10 20 10'® 10
15 105 10 106
20 105 107 106
30 105 10'® 106
20 20 10" 190

HEHOOQW®

Example interaction

Consider the following postcard, with n = 2 and m = 5.

2/4

beCP 2020 — Task 3: Skyline (skyline)

<
o B N W N

H
|
0
i

Your function is called as findHighest(2,5). It makes the following calls
to function isBlack(i,j).

Call Result

isBlack(0,0) true
isBlack(0,1) true
isBlack(0,2) false
isBlack(1,4) false
isBlack(1,3) true

The information obtained is sufficient to conclude that the first column has
2 black pixels and the second column has 4 black pixels. The bigger of the
two is 4, so findHighest () returns 4. Of course this is only an example; you
are free to use the queries as you see fit.

Implementation, compilation and testing

You must implement function findHighest(n,m) located in file skyline.cpp.
To compile then execute, use the following commands:

C++ | g++ -std=c++11 -Wall grader.cpp skyline.cpp
./a.out < skyline.in

To test your code on several possible cases, you can modify file sam-
ple.in. The first line of this file contains n and m. The second line contains
n integers, each between 0 and m: the number of black pixels in each col-
umn. Here are the inputs corresponding to the two examples in this task
description.

sample.in (first example) sample.in (second example)
8 6 25
32045210 2 4

3/4

beCP 2020 — Task 3: Skyline (skyline)

Submission and verdict

You should only submit file skyline.cpp.

A “Wrong Answer” verdict can either mean that you used too many
questions of a certain type, or that the array you return is incorrect.

A “Runtime Error” verdict can (among other things) mean that you
asked an invalid query.

Do not print anything to stdout in your program: never use cout,
printf() or System.out.println().

4/4

